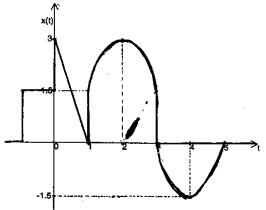
OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

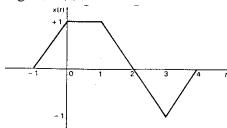
ECEN 3723 Systems I Fall 2000 Midterm Exam #1

CHOOSE ANY 4 PROBLEMS OUT OF 5

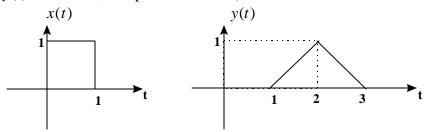

Name : _____

Student ID: _____

E-Mail Address:_____


Problem 1:

a) Describe the following signal, x(t), in terms of some basis functions (e.g., step, impulse, ramp or sinusoidal).

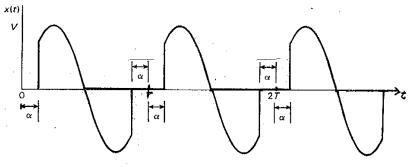

b) Make the labeled sketch of y(t) = 3 - 3x(2 - 4t)

based on a given continuous time signal, x(t), show below.

Problem 2:

A system is found to have zero-state response, y(t), when the input, x(t), is applied. Is this system a) causal, b) time-varying, c) zero-memory, and/or d) zero-state linear ? Justify your answer. (hint: find how x(t) and y(t) are related, then proceed as usual)

Problem 3:


A continuous-time signal x(t) has the Laplace transform

$$X(s) = \frac{s+1}{s^2 + 5s + 7},$$

determine the Laplace transform V(s) for

$$v(t) = x(t)\sin 2t .$$

Problem 4:

Determine the Laplace transform of the following signal, x(t), with an infinite number of chopped sinusoidal waves.

Problem 5:

A continuous-time system is defined by the input-output differential equation

$$\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 3y(t) = 2 \frac{d^2 x(t)}{dt^2} - 4 \frac{dx(t)}{dt} - x(t),$$

compute the response, y(t), for all $t \ge 0$, when

 $y(0^{-}) = -2$, $\dot{y}(0^{-}) = 1$, and x(t) = u(t).